Publications

2017

 

Using artificial diets to understand the nutritional physiology of Drosophila melanogaster.

Piper, M.D.W. 2017. Using artificial diets to understand the nutritional physiology of Drosophila melanogaster. Current Opinion in Insect Science, 23, 104-111. doi:10.1016/j.cois.2017.07.014

 

 


 

Matching complex dietary landscapes with the signalling pathways that regulate life history traits.

Mirth, C., and Piper, M. 2017. Matching complex dietary landscapes with the signalling pathways that regulate lifehistory traits. Current Opinion in Genetics & Development 47, 9–16. doi: 10.1016/j.gde.2017.08.001

 


 

Commensal bacteria and essential amino acids control food choice behavior and reproduction.

Leitão-Gonçalves, R., Carvalho-Santos, Z., Francisco, A.P., Fioreze, G.T., Anjos, M., Baltazar, C., Elias, A.P., Itskov, P.M., Piper, M.D.W., Ribeiro, C. 2017. Commensal bacteria and essential amino acids control food choice behavior and reproduction. PLoS Biol 15(4): e2000862. doi:10.1371/journal.pbio.2000862

 


 

Matching Dietary Amino Acid Balance to the In Silico-Translated Exome Optimizes Growth and Reproduction without Cost to Lifespan.

Piper, M.W.D., Soultoukis, G.A., Blanc, E., Mesaros, A., Herbert, S.L., Juricic, P., He, X., Atanassov, I., Salmonowicz, H., Yang, M., Stephen J. Simpson, S., J., Ribeiro, C., Partridge, L. 2017. Matching Dietary Amino Acid Balance to the In Silico-Translated Exome Optimizes Growth and Reproduction without Cost to Lifespan. Cell Metabolism 25, pp 610-621. doi: 10.1016/j.cmet.2017.02.005


Both overlapping and independent mechanisms determine how diet and insulin-ligand knockouts extend lifespan of Drosophila melanogaster.

Zandveld, J., van den Heuvel, J., Zwaan, B.J. & Piper, M.D.W. 2017. Both overlapping and independent mechanisms determine how diet and insulin-ligand knockouts extend lifespan of Drosophila melanogaster. NPJ Aging and Mechanisms of Disease. doi:10.1038/s41514-017-0004-0


Nutritional Programming of Lifespan by FOXO Inhibition on Sugar-Rich Diets

Dobson A.J., Ezcurra, M., Flanagan, C.E., Summerfield, A.C., Piper, M.D.W., Gems, D., Alic, N. 2017. Nutritional Programming of Lifespan by FOXO Inhibition on Sugar-Rich Diets. Cell Reports 18, pp 299–306. doi: 10.1016/j.celrep.2016.12.029


2016

Protocols to Study Aging in Drosophila

Piper, M.D.W., Partridge, L. 2016. Protocols to Study Aging in Drosophila. Methods in Molecular Biology 1478, pp 291-302.  doi:10.1007/978-1-4939-6371-3_18


Lifespan extension by dietary restriction is associated with GATA motifs and organ-specific, TOR-dependent transcriptional networks

Dobson, A.J., He, X., Blanc, E., Bolukbasi, E., Yang, M. & Piper, M.D.W. [2016]  Lifespan extension by dietary restriction is associated with GATA motifs and organ-specific, TOR-dependent transcriptional networks. BioRxiv. doi: 10.1101/036848


Nuclear hormone receptor DHR96 mediates the resistance to xenobiotics but not the increased lifespan of insulin-mutant Drosophila.

Afschar, S., Toivonen, J.M., Hoffmann, J., Tain, L.S., Wieser, D., Finlayson, A.J., Dreige, Y., Alic, N., Emran, S., Stinn, J., Froehlich, J., Piper, M.D.W.* & Partridge, L.* [2016] Nuclear hormone receptor DHR96 mediates the resistance to xenobiotics but not the increased lifespan of insulin-mutant Drosophila. Proceedings of the National Academy of Sciences, USA, doi:10.1073/pnas.1515137113 (*co-corresponding author)


2015

Quantifly: robust trainable software for automated Drosophila egg counting.

Waithe, D., Rennert, P., Brostow, G. & Piper, M.D.W. [2015] Quantifly: robust trainable software for automated Drosophila egg counting. PLoS One, doi:10.1371/journal.pone.0127659


2014

Using doubly-labelled water to measure energy expenditure in an important small ectotherm Drosophila melanogaster.

Piper, M.D.W., Selman, C., Speakman, J.R. & Partridge, L [2014] Using doubly-labelled water to measure energy expenditure in an important small ectotherm Drosophila melanogaster. Journal of Genetics and Genomics, 41, 505-512. doi:doi:10.1016/j.jgg.2014.07.004


Target of Rapamycin Signalling Mediates the Lifespan-Extending Effects of Dietary Restriction by Essential Amino Acid Alteration.

Emran, S., Yang, M., He, X., Zandveld, J. & Piper, M.D.W. [2014] Target of Rapamycin Signalling Mediates the Lifespan-Extending Effects of Dietary Restriction by Essential Amino Acid Alteration. Aging, 6, 1-9.


A holidic medium for Drosophila melanogaster.

Piper, M.D.W., Blanc, E., Leitão-Gonçalves, R., Yang, M, He, X, Linford, N.J., Hoddinott, M.P., Hopfen, C, Soultoukis, G.A., Niemeyer, C, Kerr, F, Pletcher, S.D., Ribeiro, C. & Partridge, L [2014] A holidic medium for Drosophila melanogasterNature Methods, 11, 100-105. doi:10.1038/nmeth.2731


2013

Analysing variation in Drosophila ageing across independent experimental studies – a meta-analysis of survival data.

Zeihm, M, Piper, M.D.W., & Thornton, J.M. [2013] Analysing variation in Drosophila ageing across independent experimental studies – a meta-analysis of survival data. Aging Cell, 12, 917-922. doi:10.1111/acel.12123


2012

Detrimental effects of RNAi: a cautionary note on its use in Drosophila ageing studies.

Alic, N., Hoddinott, M.H., Foley, A., Slack, C., Piper, M.D.W. & Partridge, L. [2012] Detrimental effects of RNAi: a cautionary note on its use in Drosophila ageing studies. PloS One, 7, e45367. doi:10.1371/journal.pone.0045367


2011

Dietary restriction and ageing: a unifying perspective.

Piper, M.D.W., Partridge, L., Raubenheimer, D. & Simpson, S.J. [2011] Dietary restriction and ageing: a unifying perspective. Cell Metabolism, 14, 154-160. doi:10.1016/j.cmet.2011.06.013


Absence of effects of Sir2 over-expression on lifespan in C. elegans and Drosophila.

Valentini, S., Burnett, C., Cabreiro, F., Goss, M., Somogyvari, M., Piper, M.D., Hoddinott, M., Sutphin, G., Leko, V., McElwee, J.J., Bedalov, A., Howard, K., Kaeberlein, M., Pletcher, S., Soti, C., Partridge, L., Gems, D. [2011] Absence of effects of Sir2 over-expression on lifespan in C. elegans and Drosophila. Nature, 477, 482-U136. doi:10.1038/nature10296  (Nominated as ‘Must Read’ (score 15) on Faculty of 1000 website)


Ageing in Drosophila: The role of insulin/Igf and TOR signaling network

Partridge, L., Alic, N., Bjedov, I. & Piper, M.D.W. [2011] Ageing in Drosophila: The role of insulin/Igf and TOR signaling network. Experimental Gerontology, 46, 376-381. doi:10.1016/j.exger.2010.09.003


Dietary restriction delays ageing, but not neuronal dysfunction, in Drosophila models of Alzheimer’s disease.

Kerr, F., Augustin, H., Piper, M.D.W., Gandy, C., Allen, M.J., Lovestone, S., Partridge, L. [2011] Dietary restriction delays ageing, but not neuronal dysfunction, in Drosophila models of Alzheimer’s disease. Neurobiology of Aging, 32, 1977-1989. doi:10.1016/j.neurobiolaging.2009.10.015


2010

Water independent effects of dietary restriction in Drosophila lifespan, comment on Water- and nutrient-dependent effects of dietary restriction in Drosophila lifespan” by Ja et al

Piper, M.D.W., Wong, R., Grandison, R.C., Bass, T.M., Martinez, P.M. & Partridge, L. [2010] Water independent effects of dietary restriction in Drosophila lifespan, comment on Water- and nutrient-dependent effects of dietary restriction in Drosophila lifespan” by Ja et al, Proceedings of the National Academy of Sciences, USA, 107, E54-E56. doi: 10.1073/pnas.0914686107


2009

Amino acid imbalance and not resource reallocation explains extension of lifespan by dietary restriction in Drosophila.

Grandison, R.C.*, Piper, M.D.W.* & Partridge, L. [2009] Amino acid imbalance and not resource reallocation explains extension of lifespan by dietary restriction in DrosophilaNature, 462, 1061-1064. doi:10.1038/nature08619  (equal first author contribution. Nominated as ‘outstanding’ (score 15) on Faculty of 1000 website )


Chemical changes in aging Drosophila melanogaster.

Iqbal, A., Piper, M.D.W., Faragher, R.G.A., Naughton, D.P., Partridge, L. & Ostler, E.L. [2009] Chemical changes in aging Drosophila melanogasterAge, 31, 343-351. doi:10.1007/s11357-009-9105-4


Quantification of food intake in Drosophila.

Wong, R., Piper, M.D.W., Wertheim, B. & Partridge, L. [2009] Quantification of food intake in DrosophilaPublic Library of Science: One, 4, e6063. doi:10.1371/journal.pone.0006063


Effect of a standardized dietary restriction protocol on multiple laboratory strains of Drosophila melanogaster.

Grandison, R.C., Wong, R, Bass, T.M., Partridge, L. & Piper, M.D.W. [2009] Effect of a standardized dietary restriction protocol on multiple laboratory strains of Drosophila melanogasterPublic Library of Science: One, 4, e4067. doi:10.1371/journal.pone.0004067


2008

Diet and Aging.

Piper, M.D.W. & Bartke A. [2008] Diet and Aging. Cell Metabolism, 8:99-104. doi:10.1016/j.cmet.2008.06.012


Pitfalls of measuring feeding rate in Drosophila melanogaster.

Wong. R.*, Piper, M.D.W.*, Blanc, E., Martinez, P. & Partridge, L. [2008] Letter to the editor of Nature Methods: Pitfalls of measuring feeding rate in Drosophila melanogasterNature Methods.  5, 214-215. doi:10.1038/nmeth0308-214. (equal first author contribution)


Separating cause from effect: how does insulin/IGF1 signalling control lifespan in worms, flies and mice?

Piper, M.D.W., Selman, C., McElwee, J.J., Partridge, L. [2008] Separating cause from effect: how does insulin/IGF1 signalling control lifespan in worms, flies and mice? Journal of Internal Medicine, 263: 179-191. doi:10.1111/j.1365-2796.2007.01906.x


Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice.

Selman, C., Lingard, S.,Choudhury, A., Batterham, R.L., Claret, M., Clements, M., Ramadani, F., Okkenhaug, K., Schuster, E., Blanc, E., Piper, M.D.W., Al-Qassab, H., Speakman, J.R., Carmignac, D., Robinson, I.C.A., Thornton, J.M., Gems, D., Partridge, L., Withers, D.J. [2008] Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice. FASEB J. 22, 807-818. doi:10.1096/fj.07-9261com


2007

Optimisation of dietary restriction protocols in Drosophila.

Bass, T.M., Grandison, R.C., Wong, R., Martinez, P., Partridge, L. & Piper, M.D.W. [2007] Optimisation of dietary restriction protocols in DrosophilaJournal of Gerontology: Biological Sciences. 62A, 1071-1081.


Evolutionarily conservation of regulated longevity assurance mechanisms.

McElwee, J.J., Schuster, E., Blanc, E., Piper, M.D.W., Thomas, J.H., Patel, D.S., Selman, C., Thornton, J.M., Withers, D.J., Partridge, L. & Gems, D. [2007] Evolutionarily conservation of regulated longevity assurance mechanisms. Genome Biology 8. R132. doi:10.1186/gb-2007-8-7-r132


Dietary restriction in Drosophila: delayed ageing or experimental artefact?

Piper, M.D.W. and Partridge, L. [2007] Dietary restriction in Drosophila: delayed ageing or experimental artefact? Public Library of Science: Genetics, 3: e57. doi:10.1371/journal.pgen.0030057


Counting calories in Drosophila dietary restriction

Piper, M.D.W., Mair, W. & Partridge, L. [2007] Letter to the Editor of Experimental Gerontology, commenting on: Min, K.J., Flatt, T., Kulaots, I., and Tatar, M. (2006) “Counting calories in Drosophila dietary restriction”. Experimental Gerontology, 42, 253-255. doi:10.1016/j.exger.2007.01.002


Transcriptional responses of Saccharomyces cerevisiae to preferred and non-preferred nitrogen sources in glucose-limited chemostat cultures.

Boer, V.M., Tai, S.L., Vuralhan, Z., Arifin, Y., Walsh, M.C., Piper, M.D.W., de Winde, J.H., Pronk, J.T. & Daran, J.M. [2007] Transcriptional responses of Saccharomyces cerevisiae to preferred and non-preferred nitrogen sources in glucose-limited chemostat cultures. FEMS Yeast Research. 7, 604-620. doi:10.1111/j.1567-1364.2007.00220.x


2006

Coordinated multitissue transcriptional and plasma metabonomic profiles following acute caloric restriction in mice.

Selman, C., Kerrison, N.D, Cooray, A., Piper, M.D.W., Lingard, S.J., Barton, R.H., Schuster, E.F., Blanc, E., Gems, D., Nicholson, J.K., Thornton, J.M., Partridge, L. & Withers, D.J. [2006] Coordinated multitissue transcriptional and plasma metabonomic profiles following acute caloric restriction in mice. Physiological Genomics. 27, 187-200. doi:10.1152/physiolgenomics.00084.2006


2005

Models of insulin signaling and longevity.

Piper, M.D.W., Selman, C., McElwee, J.J & Partridge, L. [2005] Models of insulin signaling and longevity. Drug Discovery Today: Disease Models. 2, 249-256. doi:10.1016/j.ddmod.2005.11.001


Diet, metabolism and lifespan in Drosophila.

Piper, M.D.W., Skorupa, D. & Partridge, L. [2005] Diet, metabolism and lifespan in DrosophilaExperimental Gerontology. 40, 857-862. doi:10.1016/j.exger.2005.06.013


Dietary restriction in Drosophila.

Partridge, L., Piper, M.D.W. & Mair, W. [2005] Dietary restriction in DrosophilaMechanisms of Ageing and Development. 126, 938-950. doi:10.1016/j.mad.2005.03.023


Calories do not explain extension of lifespan by dietary restriction in Drosophila.

Mair, W., Piper, M.D.W. & Partridge, L. [2005] Calories do not explain extension of lifespan by dietary restriction in DrosophilaPublic Library of Science: Biology. 3(7), e223. doi:10.1371/journal.pbio.0030223 (Nominated as ‘Must Read’ (score 8) on Faculty of 1000 Biology website)


Counting the calories: the role of specific nutrients in extension of lifespan by food restriction.

Piper, M.D.W., Mair, W. & Partridge, L. [2005] Counting the calories: the role of specific nutrients in extension of lifespan by food restriction. Journal of Gerontology: Biological Sciences 60, 549-555. doi:10.1093/gerona/60.5.549


Longer lifespan, altered metabolism and stress resistance in Drosophila from ablation of cells making insulin-like ligands.

Broughton, S.J.*, Piper, M.D.W.*, Ikeya, T., Bass, T.M., Jacobson, J., Driege, Y.,  Martinez, P., Hafen, E., Withers, D.J., Leevers, S. & Partridge, L. [2005] Longer lifespan, altered metabolism and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proceedings of the National Academy of Sciences, USA 102, 3105-3110. doi:10.1073/pnas.0405775102. (equal first author contribution)


2004

Prolonged maltose-limited chemostat cultivation of Saccharomyces cerevisiae selects for cells with improved maltose affinity and hypersensitivity.

Jansen, M.L.A., Daran-Lapujade, P., de Winde, J.H., Piper, M.D.W. & Pronk, J.T. [2004] Prolonged maltose-limited chemostat cultivation of Saccharomyces cerevisiae selects for cells with improved maltose affinity and hypersensitivity. Applied and Environmental Microbiology 70, 1956-1963. doi:10.1128/AEM.70.4.1956-1963.2004


Identification of a novel one-carbon metabolism regulon in Saccharomyces cerevisiae.

Gelling, C.L., Piper, M.D.W., Hong, S.-P., Kornfeld, G.D. & Dawes, I.W. [2004] Identification of a novel one-carbon metabolism regulon in Saccharomyces cerevisiaeJournal of Biological Chemistry 279, 7072-7081. doi:10.1074/jbc.M309178200


Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose tolerant, and pyruvate-hyperproducing yeast.

van Maris, A.J.A., Geertman, J.M., Vermeulen, A., Groothuizen, M., Winkler, A.A., Piper, M.D.W., van Dijken, J.P. & Pronk, J.T. [2004] Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose tolerant, and pyruvate-hyperproducing yeast. Applied and Environmental Microbiology 70, 159-166. doi:10.1128/AEM.70.1.159-166.2004


2003

Comparative genotyping of Saccharomyces cerevisiae CEN.PK 113-7D and S288C using oligonucleotide microarrays.

Daran-Lapujade, P., Daran, J-M., Kotter, P., Petit, T., Piper, M.D.W. & Pronk, J.T. [2003] Comparative genotyping of Saccharomyces cerevisiae CEN.PK 113-7D and S288C using oligonucleotide microarrays. FEMS Yeast Research 4, 259-269. doi:10.1016/S1567-1356(03)00156-9


Identification and characterization of the genes required for phenylpyruvate decarboxylation in Saccharomyces cerevisiae.

Vuralhan, Z., Morais, M., Tai, S.L., Piper, M.D.W. & Pronk, J.T. [2003] Identification and characterization of the genes required for phenylpyruvate decarboxylation in Saccharomyces cerevisiaeApplied and Environmental Microbiology 69, 4534-4541. doi:0.1128/AEM.69.8.4534-4541.2003


The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus or sulfur.

Boer, V.M., de Winde, H., Pronk, J.T. & Piper, M.D.W. [2003] The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus or sulfur. Journal of Biological Chemistry 278, 3265-3274. doi:10.1074/jbc.M209759200


Hap4p overexpression in glucose-grown Saccharomyces cerevisiae induces cells to enter a novel metabolic state.

Lascaris, R., Bussemaker, H.J., Boorsma, A., Piper, M.D.W., van der Spek, H., Grivell, L. & Blom, J. [2003] doi:10.1186/gb-2002-4-1-r3


2002

Reproducibility of oligonucleotide microarray transcriptome analyses: an interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiae.

Piper, M.D.W., Daran-Lapujade, P., Bro, C., Regenberg, B., Knudsen, S., Nielsen, J. & Pronk, J.T. [2002] Reproducibility of oligonucleotide microarray transcriptome analyses: an interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiaeJournal of Biological Chemistry 277, 37001-37008. doi:10.1074/jbc.M204490200


Regulation of the yeast glycine cleavage genes is responsive to the presence of multiple nutrients.

Piper, M.D.W., Hong, S.P., Eiβing, T., Sealey, P. & Dawes, I.W. [2002] Regulation of the yeast glycine cleavage genes is responsive to the presence of multiple nutrients. FEMS Yeast Research 2, 59-71. doi:10.1111/j.1567-1364.2002.tb00069.x


2000

Regulation of the balance of one-carbon metabolism in Saccharomyces cereveisiae.

Piper, M.D., Hong, S-P., Ball, G.E & Dawes, I.W. [2000] Regulation of the balance of one-carbon metabolism in Saccharomyces cereveisiaeJournal of Biological Chemistry  275,  30987-30995. doi:10.1074/jbc.M004248200


1999

Control of expression of one-carbon metabolism genes of Saccharomyces cerevisiae is mediated by a tetrahydrofolate-responsive protein binding to a glycine regulatory region including a core 5’-CTTCTT-3’ motif.

Hong, S-P., Piper, M.D., Sinclair, D.A. & Dawes, I.W. [1999] Control of expression of one-carbon metabolism genes of Saccharomyces cerevisiae is mediated by a tetrahydrofolate-responsive protein binding to a glycine regulatory region including a core 5’-CTTCTT-3’ motif. Journal of Biological Chemistry 274, 10523-10532. doi:10.1074/jbc.274.15.10523