2024
A multi-nutrient array protocol to study disease-diet interactions in Drosophila melanogaster.
Lin, J., Martelli, F., Mele, S., Quig, A., Johnson, T.K., Piper, M.D.W. 2024.
A multi-nutrient array protocol to study disease-diet interactions in Drosophila melanogaster. STAR Protocols 5, Issue 3. Doi:10.1016/j.xpro.2024.103225
Transiently restricting individual amino acids protects Drosophila melanogaster against multiple stressors.
Fulton, T.L., Johnstone, J.N., Tan, J.J., Balagopal, K., Dedman, A., Chan, A.Y., Johnson, T.K., Mirth, C.K. and Piper, M.D.W. 2024. Transiently restricting individual amino acids protects Drosophila melanogaster against multiple stressors. Open Biology 14240093. Doi:10.1098/rsob.240093
A Simple Method for Quantifying Larval Locomotion in Drosophila melanogaster.
Lin, J., Mele, S., Piper, M.D.W., Johnson, T.K. 2024. A Simple Method for Quantifying Larval Locomotion in Drosophila melanogaster. In: Dworkin, S. (eds) Neurobiology. Methods in Molecular Biology 2746. Doi:10.1007/978-1-0716-3585-8_8
Exome-informed formulations of food proteins enhance body growth and feed efficiency in ad libitum-fed mice.
Wu, T., Baatar, D., O’ Connor, A.E., O’Bryan, M.K., Stringer, J.M., Hutt, K.J., Malimige Aponso, M., Monro, K., Luo, J., Zhu, Y., Ernst, A., Swindells, E.O.K., Alesi, L.R., Nguyen, N.T.T., Piper, M.D.W., Bennett, L.E. 2023. Exome-informed formulations of food proteins enhance body growth and feed efficiency in ad libitum-fed mice. Food Research International. Doi:10.1016/j.foodres.2023.113819
2023
Short-term fasting of a single amino acid extends lifespan.
Fulton, T.L., Wansbrough, M.R., Mirth, C.K., Piper. M.D.W. 2023. Short-term fasting of a single amino acid extends lifespan. bioRxiv 2023.08.10.552880. doi:10.1101/2023.08.10.552880
Ageing impairs protein leveraging in a sex-specific manner in Drosophila melanogaster.
Rushby, H., Andrews, Z.B., Piper, M.D.W., Mirth, C.K. 2023. Ageing impairs protein leveraging in a sex-specific manner in Drosophila melanogaster. Animal Behaviour 195, pp 43-51. Doi:10.1016/j.anbehav.2022.10.013
Early-adult methionine restriction reduces methionine sulfoxide and extends lifespan in Drosophila.
Kosakamoto, H., Obata, F., Kuraishi, J., Aikawa, H., Okada, R., Johnstone, J.N., Onuma, T., Piper, M.D.W., Miura, M. 2023. Early-adult methionine restriction reduces methionine sulfoxide and extends lifespan in Drosophila. bioRxiv 2023.03.15.532514. doi:10.1101/2023.03.15.532514
Biosynthetic constraints on amino acid synthesis at the base of the food chain may determine their use in higher-order consumer genomes.
Gómez Ortega, J., Raubenheimer, D., Tyagi, S., Mirth, C.K., Piper, M.D.W. 2023. Biosynthetic constraints on amino acid synthesis at the base of the food chain may determine their use in higher-order consumer genomes. PLoS Genetics 19(2): e1010635. Doi:10.1371/journal.pgen.1010635
2022
Drosophila as a diet discovery tool for treating amino acid disorders.
Mele, S., Martelli, F., Lin, J., Kanca, O., Christodoulou, J., Bellen, H.J., Piper, M.D.W., Travis K. Johnson, T.K. 2022. Drosophila as a diet discovery tool for treating amino acid disorders. Trends in Endocrinology & Metabolism. Doi:10.1016/j.tem.2022.12.004
Drosophila melanogaster females prioritise dietary sterols for producing viable eggs.
Zanco, B., Rapley, L., Johnstone, J.N., Dedman, A., Mirth, C.K., Sgrò, C.M., Matthew D.W. Piper, M.D.W. 2022. Drosophila melanogaster females prioritise dietary sterols for producing viable eggs. Journal of Insect Physiology. Doi:10.1016/j.jinsphys.2022.104472
Restricting a single amino acid cross-protects D. melanogaster from nicotine poisoning through mTORC1 and GCN2 signalling.
Fulton, T.L., Mirth, C.K., Piper, M.D.W. 2022. Restricting a single amino acid cross-protects D. melanogaster from nicotine poisoning through mTORC1 and GCN2 signalling. Open Biology 12. Doi:10.1098/rsob.220319
Maternal and paternal sugar consumption interact to modify offspring life history and physiology.
Camilleri, T.-L., Piper, M.D.W., Robker, R.L., Dowling, D.K. 2022. Maternal and paternal sugar consumption interact to modify offspring life history and physiology. Functional Ecology. doi:10.1111/1365-2435.14024
Dietary restriction and lifespan: adaptive reallocation or somatic sacrifice?
Piper, M.D.W., Zanco, B., Sgrò, C.M., Adler, M.I., Mirth, C.K. and Bonduriansky, R. 2022. Dietary restriction and lifespan: adaptive reallocation or somatic sacrifice? FEBS Journal. Doi:10.1111/febs.16463
Target of Rapamycin Drives Unequal Responses to Essential Amino Acid Depletion for Egg Laying in Drosophila Melanogaster.
Alves, A.N., Sgrò, C.M., Piper, M.D.W., Mirth, C.K. 2022. Target of Rapamycin Drives Unequal Responses to Essential Amino Acid Depletion for Egg Laying in Drosophila Melanogaster. Frontiers in Cell and Developmental Biology 10:822685. Doi: 10.3389/fcell.2022.822685
2021
The Biosynthetic Costs of Amino Acids at the Base of the Food Chain Determine Their Use in Higher-order Consumer Genomes.
Ortega, J.G., Tyagi, S., Mirth, C.K., Piper, M.D.W. 2021. The Biosynthetic Costs of Amino Acids at the Base of the Food Chain Determine Their Use in Higher-order Consumer Genomes. bioRxiv; 2021. Doi: 10.1101/2021.11.03.467059
A dietary sterol trade-off determines lifespan responses to dietary restriction in Drosophila melanogaster females.
Zanco, B., Mirth, C.K., Sgrò, C.M., Piper, M.D.W. 2021. A dietary sterol trade-off determines lifespan responses to dietary restriction in Drosophila melanogaster females. eLife 10:e62335. Doi:10.7554/eLife.62335
A dietary sterol trade off determines lifespan responses to dietary restriction in Drosophila melanogaster.
Zanco, B., Mirth, C.K., Sgrò, C.M., Piper, M.D.W. 2020.A dietary sterol trade off determines lifespan responses to dietary restriction in Drosophila melanogaster. bioRxiv 2020.08.21.260489; doi:10.1101/2020.08.21.260489
Effects of Short-Term Dietary Protein Restriction on Blood Amino Acid Levels in Young Men.
Sjøberg, K.A., Schmoll, D., Piper, M.D.W., Kiens, B., Rose, A.J. 2020. Effects of Short-Term Dietary Protein Restriction on Blood Amino Acid Levels in Young Men. Nutrients 12, pp 2195. doi:10.3390/nu12082195
Restriction of essential amino acids dictates the systemic metabolic response to dietary protein dilution.
Yap, Y.W., Rusu, P.M., Chan, A.Y. et al. 2020. Restriction of essential amino acids dictates the systemic metabolic response to dietary protein dilution. Nat Commun 11, 2894. Doi:10.1038/s41467-020-16568-z
Sexual dimorphism in the nutritional requirement for adult lifespan in Drosophila melanogaster.
Wu, Q, Yu, G, Cheng, X, et al. Sexual dimorphism in the nutritional requirement for adult lifespan in Drosophila melanogaster. Aging Cell. 2020; 00:e13120. doi:10.1111/acel.13120
2019
Sex-specific transcriptomic responses to changes in the nutritional environment
Camus, M.F., Piper, M.D.W., Reuter, M. 2019. ex-specific transcriptomic responses to changes in the nutritional environment. eLife Evolutionary Biology. Doi:10.7554/eLife.47262
Transgenerational obesity and healthy ageing in Drosophila.
Camilleri-Carter, T-L., Dowling, D.K., Robker, R.Piper, M.D.W. 2019. Transgenerational obesity and healthy ageing in Drosophila. The Journals of Gerontology A. Doi: 10.1093/gerona/glz154
Branched-chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control
Solon-Biet, S.M, Cogger, V.C., Pulpitel, T., Wahl, D., Clark, X., Bagley, E.E., Gregoriou, G.C., Senior, A.M., Wang, Q-P., Brandon, A.E., Perks, R., O’Sullivan, J., Chin Koay, Y., Bell-Anderson, K., Kebede, M., Yau, B., Atkinson, C., Svineng, G., Dodgson, T., Wali, J.A., Piper, M.D.W., Juricic, P., Partridge, L., Rose, A.J., Raubenheimer, D., Cooney, G.J., Couteur, D.G., Simpson, S.J. 2019. Branched-chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control. Nature Metabolism 1, pp 532–545. Doi: 10.1038/s42255-019-0059-2
2018
Using Mouse and Drosophila Models to Investigate the Mechanistic Links between Diet, Obesity, Type II Diabetes, and Cancer.
Warr, C.G., Shaw, K.H., Azim, A., Piper, M.D.W., Parsons, L.M. 2018. Using Mouse and Drosophila Models to Investigate the Mechanistic Links between Diet, Obesity, Type II Diabetes, and Cancer. International Journal of Molecular Sciences.19, 4110. Doi: 10.3390/ijms19124110
Turning Food Into Eggs: insights from nutritional biology and developmental physiology of Drosophila.
Mirth, C.K., Alves, A.N., Piper, M.D.W. 2018. Turning Food Into Eggs: insights from nutritional biology and developmental physiology of Drosophila. Current Opinion in Insect Science. doi:10.1016/j.cois.2018.08.006.
Tissue-specific transcriptome profiling of Drosophila reveals roles for GATA transcription factors in longevity by dietary restriction.
Dobson, A.J., He, X., Blanc, E., Bolukbasi, E., Feseha, Y., Yang, M., Piper, M.D.W. 2018. Tissue-specific transcriptome profiling of Drosophila reveals roles for GATA transcription factors in longevity by dietary restriction.NPJ Aging and Mechanisms of Disease 4. doi:10.1038/s41514-018-0024-4
VideoTagger: User-Friendly Software for Annotating Video Experiments of Any Duration
Rennert, P., Aodha, O.M., Piper, M.D.W.,Brostow, G. 2018.VideoTagger: User-Friendly Software for Annotating Video Experiments of Any Duration. BioRxiv 272468. doi:10.1101/272468
2017
Sex- and genotype-effects on nutrient-dependent fitness landscapes in Drosophila melanogaster.
Camus, M.F., Fowler, K., Piper, M.D.W. & Reuter, M. 2017. Sex- and genotype-effects on nutrient-dependent fitness landscapes in Drosophila melanogaster. Proceedings of the Royal Society B. doi: 10.1098/rspb.2017.2237
Drosophila as a model for ageing.
Piper, M.D.W. & Partridge, L. 2017. Drosophila as a model for ageing. BBA: molecular basis of disease. doi:10.1016/j.bbadis.2017.09.016
Using artificial diets to understand the nutritional physiology of Drosophila melanogaster.
Piper, M.D.W. 2017. Using artificial diets to understand the nutritional physiology of Drosophila melanogaster. Current Opinion in Insect Science, 23, 104-111. doi:10.1016/j.cois.2017.07.014
Matching complex dietary landscapes with the signalling pathways that regulate life history traits.
Mirth, C., and Piper, M. 2017. Matching complex dietary landscapes with the signalling pathways that regulate lifehistory traits. Current Opinion in Genetics & Development 47, 9–16. doi: 10.1016/j.gde.2017.08.001
Commensal bacteria and essential amino acids control food choice behavior and reproduction.
Leitão-Gonçalves, R., Carvalho-Santos, Z., Francisco, A.P., Fioreze, G.T., Anjos, M., Baltazar, C., Elias, A.P., Itskov, P.M., Piper, M.D.W., Ribeiro, C. 2017. Commensal bacteria and essential amino acids control food choice behavior and reproduction. PLoS Biol 15(4): e2000862. doi:10.1371/journal.pbio.2000862
Matching Dietary Amino Acid Balance to the In Silico-Translated Exome Optimizes Growth and Reproduction without Cost to Lifespan.
Piper, M.W.D., Soultoukis, G.A., Blanc, E., Mesaros, A., Herbert, S.L., Juricic, P., He, X., Atanassov, I., Salmonowicz, H., Yang, M., Stephen J. Simpson, S., J., Ribeiro, C., Partridge, L. 2017. Matching Dietary Amino Acid Balance to the In Silico-Translated Exome Optimizes Growth and Reproduction without Cost to Lifespan. Cell Metabolism 25, pp 610-621. doi: 10.1016/j.cmet.2017.02.005
Both overlapping and independent mechanisms determine how diet and insulin-ligand knockouts extend lifespan of Drosophila melanogaster.
Zandveld, J., van den Heuvel, J., Zwaan, B.J. & Piper, M.D.W. 2017. Both overlapping and independent mechanisms determine how diet and insulin-ligand knockouts extend lifespan of Drosophila melanogaster. NPJ Aging and Mechanisms of Disease. doi:10.1038/s41514-017-0004-0
Nutritional Programming of Lifespan by FOXO Inhibition on Sugar-Rich Diets
Dobson A.J., Ezcurra, M., Flanagan, C.E., Summerfield, A.C., Piper, M.D.W., Gems, D., Alic, N. 2017. Nutritional Programming of Lifespan by FOXO Inhibition on Sugar-Rich Diets. Cell Reports 18, pp 299–306. doi: 10.1016/j.celrep.2016.12.029
2016
Protocols to Study Aging in Drosophila
Piper, M.D.W., Partridge, L. 2016. Protocols to Study Aging in Drosophila. Methods in Molecular Biology 1478, pp 291-302. doi:10.1007/978-1-4939-6371-3_18
Nuclear hormone receptor DHR96 mediates the resistance to xenobiotics but not the increased lifespan of insulin-mutant Drosophila.
Afschar, S., Toivonen, J.M., Hoffmann, J., Tain, L.S., Wieser, D., Finlayson, A.J., Dreige, Y., Alic, N., Emran, S., Stinn, J., Froehlich, J., Piper, M.D.W.* & Partridge, L.* [2016] Nuclear hormone receptor DHR96 mediates the resistance to xenobiotics but not the increased lifespan of insulin-mutant Drosophila. Proceedings of the National Academy of Sciences, USA, doi:10.1073/pnas.1515137113 (*co-corresponding author)
2015
Quantifly: robust trainable software for automated Drosophila egg counting.
Waithe, D., Rennert, P., Brostow, G. & Piper, M.D.W. [2015] Quantifly: robust trainable software for automated Drosophila egg counting. PLoS One, doi:10.1371/journal.pone.0127659
2014
Using doubly-labelled water to measure energy expenditure in an important small ectotherm Drosophila melanogaster.
Piper, M.D.W., Selman, C., Speakman, J.R. & Partridge, L [2014] Using doubly-labelled water to measure energy expenditure in an important small ectotherm Drosophila melanogaster. Journal of Genetics and Genomics, 41, 505-512. doi:doi:10.1016/j.jgg.2014.07.004
Target of Rapamycin Signalling Mediates the Lifespan-Extending Effects of Dietary Restriction by Essential Amino Acid Alteration.
Emran, S., Yang, M., He, X., Zandveld, J. & Piper, M.D.W. [2014] Target of Rapamycin Signalling Mediates the Lifespan-Extending Effects of Dietary Restriction by Essential Amino Acid Alteration. Aging, 6, 1-9.
A holidic medium for Drosophila melanogaster.
Piper, M.D.W., Blanc, E., Leitão-Gonçalves, R., Yang, M, He, X, Linford, N.J., Hoddinott, M.P., Hopfen, C, Soultoukis, G.A., Niemeyer, C, Kerr, F, Pletcher, S.D., Ribeiro, C. & Partridge, L [2014] A holidic medium for Drosophila melanogaster. Nature Methods, 11, 100-105. doi:10.1038/nmeth.2731
2013
Analysing variation in Drosophila ageing across independent experimental studies – a meta-analysis of survival data.
Zeihm, M, Piper, M.D.W., & Thornton, J.M. [2013] Analysing variation in Drosophila ageing across independent experimental studies – a meta-analysis of survival data. Aging Cell, 12, 917-922. doi:10.1111/acel.12123
2012
Detrimental effects of RNAi: a cautionary note on its use in Drosophila ageing studies.
Alic, N., Hoddinott, M.H., Foley, A., Slack, C., Piper, M.D.W. & Partridge, L. [2012] Detrimental effects of RNAi: a cautionary note on its use in Drosophila ageing studies. PloS One, 7, e45367. doi:10.1371/journal.pone.0045367
2011
Dietary restriction and ageing: a unifying perspective.
Piper, M.D.W., Partridge, L., Raubenheimer, D. & Simpson, S.J. [2011] Dietary restriction and ageing: a unifying perspective. Cell Metabolism, 14, 154-160. doi:10.1016/j.cmet.2011.06.013
Absence of effects of Sir2 over-expression on lifespan in C. elegans and Drosophila.
Valentini, S., Burnett, C., Cabreiro, F., Goss, M., Somogyvari, M., Piper, M.D., Hoddinott, M., Sutphin, G., Leko, V., McElwee, J.J., Bedalov, A., Howard, K., Kaeberlein, M., Pletcher, S., Soti, C., Partridge, L., Gems, D. [2011] Absence of effects of Sir2 over-expression on lifespan in C. elegans and Drosophila. Nature, 477, 482-U136. doi:10.1038/nature10296 (Nominated as ‘Must Read’ (score 15) on Faculty of 1000 website)
Ageing in Drosophila: The role of insulin/Igf and TOR signaling network
Partridge, L., Alic, N., Bjedov, I. & Piper, M.D.W. [2011] Ageing in Drosophila: The role of insulin/Igf and TOR signaling network. Experimental Gerontology, 46, 376-381. doi:10.1016/j.exger.2010.09.003
Dietary restriction delays ageing, but not neuronal dysfunction, in Drosophila models of Alzheimer’s disease.
Kerr, F., Augustin, H., Piper, M.D.W., Gandy, C., Allen, M.J., Lovestone, S., Partridge, L. [2011] Dietary restriction delays ageing, but not neuronal dysfunction, in Drosophila models of Alzheimer’s disease. Neurobiology of Aging, 32, 1977-1989. doi:10.1016/j.neurobiolaging.2009.10.015
2010
Water independent effects of dietary restriction in Drosophila lifespan, comment on Water- and nutrient-dependent effects of dietary restriction in Drosophila lifespan” by Ja et al
Piper, M.D.W., Wong, R., Grandison, R.C., Bass, T.M., Martinez, P.M. & Partridge, L. [2010] Water independent effects of dietary restriction in Drosophila lifespan, comment on Water- and nutrient-dependent effects of dietary restriction in Drosophila lifespan” by Ja et al, Proceedings of the National Academy of Sciences, USA, 107, E54-E56. doi: 10.1073/pnas.0914686107
2009
Amino acid imbalance and not resource reallocation explains extension of lifespan by dietary restriction in Drosophila.
Grandison, R.C.*, Piper, M.D.W.* & Partridge, L. [2009] Amino acid imbalance and not resource reallocation explains extension of lifespan by dietary restriction in Drosophila. Nature, 462, 1061-1064. doi:10.1038/nature08619 (equal first author contribution. Nominated as ‘outstanding’ (score 15) on Faculty of 1000 website )
Chemical changes in aging Drosophila melanogaster.
Iqbal, A., Piper, M.D.W., Faragher, R.G.A., Naughton, D.P., Partridge, L. & Ostler, E.L. [2009] Chemical changes in aging Drosophila melanogaster. Age, 31, 343-351. doi:10.1007/s11357-009-9105-4
Quantification of food intake in Drosophila.
Wong, R., Piper, M.D.W., Wertheim, B. & Partridge, L. [2009] Quantification of food intake in Drosophila. Public Library of Science: One, 4, e6063. doi:10.1371/journal.pone.0006063
Effect of a standardized dietary restriction protocol on multiple laboratory strains of Drosophila melanogaster.
Grandison, R.C., Wong, R, Bass, T.M., Partridge, L. & Piper, M.D.W. [2009] Effect of a standardized dietary restriction protocol on multiple laboratory strains of Drosophila melanogaster. Public Library of Science: One, 4, e4067. doi:10.1371/journal.pone.0004067
2008
Diet and Aging.
Piper, M.D.W. & Bartke A. [2008] Diet and Aging. Cell Metabolism, 8:99-104. doi:10.1016/j.cmet.2008.06.012
Pitfalls of measuring feeding rate in Drosophila melanogaster.
Wong. R.*, Piper, M.D.W.*, Blanc, E., Martinez, P. & Partridge, L. [2008] Letter to the editor of Nature Methods: Pitfalls of measuring feeding rate in Drosophila melanogaster. Nature Methods. 5, 214-215. doi:10.1038/nmeth0308-214. (equal first author contribution)
Separating cause from effect: how does insulin/IGF1 signalling control lifespan in worms, flies and mice?
Piper, M.D.W., Selman, C., McElwee, J.J., Partridge, L. [2008] Separating cause from effect: how does insulin/IGF1 signalling control lifespan in worms, flies and mice? Journal of Internal Medicine, 263: 179-191. doi:10.1111/j.1365-2796.2007.01906.x
Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice.
Selman, C., Lingard, S.,Choudhury, A., Batterham, R.L., Claret, M., Clements, M., Ramadani, F., Okkenhaug, K., Schuster, E., Blanc, E., Piper, M.D.W., Al-Qassab, H., Speakman, J.R., Carmignac, D., Robinson, I.C.A., Thornton, J.M., Gems, D., Partridge, L., Withers, D.J. [2008] Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice. FASEB J. 22, 807-818. doi:10.1096/fj.07-9261com
2007
Optimisation of dietary restriction protocols in Drosophila.
Bass, T.M., Grandison, R.C., Wong, R., Martinez, P., Partridge, L. & Piper, M.D.W. [2007] Optimisation of dietary restriction protocols in Drosophila. Journal of Gerontology: Biological Sciences. 62A, 1071-1081.
Evolutionarily conservation of regulated longevity assurance mechanisms.
McElwee, J.J., Schuster, E., Blanc, E., Piper, M.D.W., Thomas, J.H., Patel, D.S., Selman, C., Thornton, J.M., Withers, D.J., Partridge, L. & Gems, D. [2007] Evolutionarily conservation of regulated longevity assurance mechanisms. Genome Biology 8. R132. doi:10.1186/gb-2007-8-7-r132
Dietary restriction in Drosophila: delayed ageing or experimental artefact?
Piper, M.D.W. and Partridge, L. [2007] Dietary restriction in Drosophila: delayed ageing or experimental artefact? Public Library of Science: Genetics, 3: e57. doi:10.1371/journal.pgen.0030057
Counting calories in Drosophila dietary restriction
Piper, M.D.W., Mair, W. & Partridge, L. [2007] Letter to the Editor of Experimental Gerontology, commenting on: Min, K.J., Flatt, T., Kulaots, I., and Tatar, M. (2006) “Counting calories in Drosophila dietary restriction”. Experimental Gerontology, 42, 253-255. doi:10.1016/j.exger.2007.01.002
Transcriptional responses of Saccharomyces cerevisiae to preferred and non-preferred nitrogen sources in glucose-limited chemostat cultures.
Boer, V.M., Tai, S.L., Vuralhan, Z., Arifin, Y., Walsh, M.C., Piper, M.D.W., de Winde, J.H., Pronk, J.T. & Daran, J.M. [2007] Transcriptional responses of Saccharomyces cerevisiae to preferred and non-preferred nitrogen sources in glucose-limited chemostat cultures. FEMS Yeast Research. 7, 604-620. doi:10.1111/j.1567-1364.2007.00220.x
2006
Coordinated multitissue transcriptional and plasma metabonomic profiles following acute caloric restriction in mice.
Selman, C., Kerrison, N.D, Cooray, A., Piper, M.D.W., Lingard, S.J., Barton, R.H., Schuster, E.F., Blanc, E., Gems, D., Nicholson, J.K., Thornton, J.M., Partridge, L. & Withers, D.J. [2006] Coordinated multitissue transcriptional and plasma metabonomic profiles following acute caloric restriction in mice. Physiological Genomics. 27, 187-200. doi:10.1152/physiolgenomics.00084.2006
2005
Models of insulin signaling and longevity.
Piper, M.D.W., Selman, C., McElwee, J.J & Partridge, L. [2005] Models of insulin signaling and longevity. Drug Discovery Today: Disease Models. 2, 249-256. doi:10.1016/j.ddmod.2005.11.001
Diet, metabolism and lifespan in Drosophila.
Piper, M.D.W., Skorupa, D. & Partridge, L. [2005] Diet, metabolism and lifespan in Drosophila. Experimental Gerontology. 40, 857-862. doi:10.1016/j.exger.2005.06.013
Dietary restriction in Drosophila.
Partridge, L., Piper, M.D.W. & Mair, W. [2005] Dietary restriction in Drosophila. Mechanisms of Ageing and Development. 126, 938-950. doi:10.1016/j.mad.2005.03.023
Calories do not explain extension of lifespan by dietary restriction in Drosophila.
Mair, W., Piper, M.D.W. & Partridge, L. [2005] Calories do not explain extension of lifespan by dietary restriction in Drosophila. Public Library of Science: Biology. 3(7), e223. doi:10.1371/journal.pbio.0030223 (Nominated as ‘Must Read’ (score 8) on Faculty of 1000 Biology website)
Counting the calories: the role of specific nutrients in extension of lifespan by food restriction.
Piper, M.D.W., Mair, W. & Partridge, L. [2005] Counting the calories: the role of specific nutrients in extension of lifespan by food restriction. Journal of Gerontology: Biological Sciences 60, 549-555. doi:10.1093/gerona/60.5.549
Longer lifespan, altered metabolism and stress resistance in Drosophila from ablation of cells making insulin-like ligands.
Broughton, S.J.*, Piper, M.D.W.*, Ikeya, T., Bass, T.M., Jacobson, J., Driege, Y., Martinez, P., Hafen, E., Withers, D.J., Leevers, S. & Partridge, L. [2005] Longer lifespan, altered metabolism and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proceedings of the National Academy of Sciences, USA 102, 3105-3110. doi:10.1073/pnas.0405775102. (equal first author contribution)
2004
Prolonged maltose-limited chemostat cultivation of Saccharomyces cerevisiae selects for cells with improved maltose affinity and hypersensitivity.
Jansen, M.L.A., Daran-Lapujade, P., de Winde, J.H., Piper, M.D.W. & Pronk, J.T. [2004] Prolonged maltose-limited chemostat cultivation of Saccharomyces cerevisiae selects for cells with improved maltose affinity and hypersensitivity. Applied and Environmental Microbiology 70, 1956-1963. doi:10.1128/AEM.70.4.1956-1963.2004
Identification of a novel one-carbon metabolism regulon in Saccharomyces cerevisiae.
Gelling, C.L., Piper, M.D.W., Hong, S.-P., Kornfeld, G.D. & Dawes, I.W. [2004] Identification of a novel one-carbon metabolism regulon in Saccharomyces cerevisiae. Journal of Biological Chemistry 279, 7072-7081. doi:10.1074/jbc.M309178200
Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose tolerant, and pyruvate-hyperproducing yeast.
van Maris, A.J.A., Geertman, J.M., Vermeulen, A., Groothuizen, M., Winkler, A.A., Piper, M.D.W., van Dijken, J.P. & Pronk, J.T. [2004] Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose tolerant, and pyruvate-hyperproducing yeast. Applied and Environmental Microbiology 70, 159-166. doi:10.1128/AEM.70.1.159-166.2004
2003
Comparative genotyping of Saccharomyces cerevisiae CEN.PK 113-7D and S288C using oligonucleotide microarrays.
Daran-Lapujade, P., Daran, J-M., Kotter, P., Petit, T., Piper, M.D.W. & Pronk, J.T. [2003] Comparative genotyping of Saccharomyces cerevisiae CEN.PK 113-7D and S288C using oligonucleotide microarrays. FEMS Yeast Research 4, 259-269. doi:10.1016/S1567-1356(03)00156-9
Identification and characterization of the genes required for phenylpyruvate decarboxylation in Saccharomyces cerevisiae.
Vuralhan, Z., Morais, M., Tai, S.L., Piper, M.D.W. & Pronk, J.T. [2003] Identification and characterization of the genes required for phenylpyruvate decarboxylation in Saccharomyces cerevisiae. Applied and Environmental Microbiology 69, 4534-4541. doi:0.1128/AEM.69.8.4534-4541.2003
The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus or sulfur.
Boer, V.M., de Winde, H., Pronk, J.T. & Piper, M.D.W. [2003] The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus or sulfur. Journal of Biological Chemistry 278, 3265-3274. doi:10.1074/jbc.M209759200
Hap4p overexpression in glucose-grown Saccharomyces cerevisiae induces cells to enter a novel metabolic state.
Lascaris, R., Bussemaker, H.J., Boorsma, A., Piper, M.D.W., van der Spek, H., Grivell, L. & Blom, J. [2003] doi:10.1186/gb-2002-4-1-r3
2002
Reproducibility of oligonucleotide microarray transcriptome analyses: an interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiae.
Piper, M.D.W., Daran-Lapujade, P., Bro, C., Regenberg, B., Knudsen, S., Nielsen, J. & Pronk, J.T. [2002] Reproducibility of oligonucleotide microarray transcriptome analyses: an interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiae. Journal of Biological Chemistry 277, 37001-37008. doi:10.1074/jbc.M204490200
Regulation of the yeast glycine cleavage genes is responsive to the presence of multiple nutrients.
Piper, M.D.W., Hong, S.P., Eiβing, T., Sealey, P. & Dawes, I.W. [2002] Regulation of the yeast glycine cleavage genes is responsive to the presence of multiple nutrients. FEMS Yeast Research 2, 59-71. doi:10.1111/j.1567-1364.2002.tb00069.x
2000
Regulation of the balance of one-carbon metabolism in Saccharomyces cereveisiae.
Piper, M.D., Hong, S-P., Ball, G.E & Dawes, I.W. [2000] Regulation of the balance of one-carbon metabolism in Saccharomyces cereveisiae. Journal of Biological Chemistry 275, 30987-30995. doi:10.1074/jbc.M004248200
1999
Control of expression of one-carbon metabolism genes of Saccharomyces cerevisiae is mediated by a tetrahydrofolate-responsive protein binding to a glycine regulatory region including a core 5’-CTTCTT-3’ motif.
Hong, S-P., Piper, M.D., Sinclair, D.A. & Dawes, I.W. [1999] Control of expression of one-carbon metabolism genes of Saccharomyces cerevisiae is mediated by a tetrahydrofolate-responsive protein binding to a glycine regulatory region including a core 5’-CTTCTT-3’ motif. Journal of Biological Chemistry 274, 10523-10532. doi:10.1074/jbc.274.15.10523